
Fun with Julia

Christina Lee

July 8, 2017

Category: General
Prerequisites: None
I wrote this piece as part of a presentation I gave to the robotics team at Benson High School in

Portland, OR. My thanks to my mentor John Delacy for working with me in high school and foster-
ing my love of science and astronomy, and for inviting me to help work with the next generation
of scientists and engineers. I loved getting to see their robots and hear about the competitions.

1 Intro to Jupyter Notebooks

Currently, we are using a jupyter notebook. This format can support either Julia, Python, or R.
The setup is quite similar to that present in the propriety software Mathematica.

We have two types of cells: * Markdown cells * Code Cells

1.0.1 Markdown Cells

This is a Markdown Cell. Here we write text or add pictures to describe what we are doing. In
raw format, everything is easily readable, but the computer can also render it to look even nicer
with headings, lists,bold,italic, tables, links, and other formatting.

I can even write equations.

x0 =
−b±

√
b2 − 4ac

2a
(1)

Equations use LaTeX syntax. LaTeX is a document preparation language used by those in
STEM. It’s how we make all those awesome looking papers. It also automatically handles our
citations for us :) Check out Overleaf to create documents online.

I can also write code inline x+=1 or in block style

for ii in 1:n

x+=1

end

1.0.2 Coding Cells

You can evaluate coding cells by pushing Shift-Enter.
Next to Coding Cells, In[] specifies the code the executable code, and Out[] specifies the

output of the given cell. The number indicates the order in which the chunk got evaluated.
Important: Global variables get edited each time you evaluate a new cell. So the order of

evaluation matters.

1

https://www.overleaf.com/

Spaceship

1.0.3 Julia’s Packages

Julia uses external packages, much like Python, to supplement its core functionality. PyPlot im-
ports plotting functionality from Python’s PyPlot with the package PyCall. Julia maintains a com-
plete list of supported external packages. While many are quite specialized or out of date, some
are incredibly useful, like different plotting tools, curve fitting, integrators, differential equations,
accelerators, working with different file types, and more.

If you need to run a Jupyter notebook on your machine instead of on JuliaBox, you would be
using the IJulia package.

In [1]: # Update packages

#Pkg.update()

Add a new package to your repository

#Pkg.add("Plots")

#Pkg.add("PlotlyJS")

Load PyPlot into

using Plots

gr()

Out[1]: Plots.GRBackend()

2 Projectile Motion

distance = rate× time =⇒ x(t) = vxt (2)

BUT

y(t) = vy(t)t ? (3)

NO! How do we solve this?

2

http://pkg.julialang.org/

First let’s write down the infinitesimal, exact version of the equations.

dx
dt

= vx
dy
dt

= vy (4)

dvx

dt
= 0

dvy

dt
= g (5)

To put this into an equation, we take the derivative and break it into a courser-grained version

dx
dt
≈ ∆x

∆t
. (6)

Now because ∆x and ∆t have actual sizes instead of being infinitesimally small, the computer
can deal with them.

Now we take lots of baby steps of ∆t over our time interval to change the position with the
changing velocity.

y(tn+1) = y(tn) + vy(tn)∆t (7)

We can also think of this as finding a small enough interval such that we can treat the y-velocity
as if it’s constant.

Bonus note: Different types of algorithms, like symplectic, evaluate the velocity at different
time points.

2.0.1 A cell of parameters we need to enter

We need to decide upon the parameters in the first cell. I’ve put in numbers that are reasonable
and tested.

You can change the value of them and see what happens to the final answer. Hopefully, noth-
ing will break ;)

But breaking things is always fun too.

In [2]: θ=π/4 #angle with respect to horizontal

v0=10 # initial velocity

x0=0; # initial position

y0=0;

t0=0 #initial time

tf=2 #final time

dt=1e-3 #time step size

Out[2]: 0.001

2.0.2 Preliminary calculation of relevant variables

Here again is more parameters, but we shouldn’t change this cell.
Unless you want to go to the moon or Mars...

3

In [3]: g=9.8 #m/s^2

vx0=v0*cos(θ) # x component of velocity at initial time step

vy0=v0*sin(θ) # y component of velocity at initial time step

t=collect(t0:dt:tf) # creates an array that holds each time point

nt=length(t) #the number of time steps we willl have

Out[3]: 2001

2.0.3 Initialization of Variables

As we march along for a bunch of time steps, we will be computing our position and velocity, but
we will need some place to put those numbers. It’s more efficient and better practice to create a
place to put those numbers beforehand. So that’s what we are doing here.

We are also setting the first value in the position/ velocity vectors to be their initial values.

In [4]: #initializing empty vectors that will hold position and velocity at each time step

x=zeros(t)

y=zeros(t)

vx=zeros(t)

vy=zeros(t)

x[1]=x0

y[1]=y0

vx[1]=vx0

vy[1]=vy0

Out[4]: 7.071067811865475

2.0.4 Loop of Time Steps

Now we do our actual calculation. We march along, taking tiny little baby steps, calculating our
new positions and our new velocities and storing them in our vectors.

In [5]: for ii in 2:nt

x[ii]=x[ii-1]+vx[ii-1]*dt

y[ii]=y[ii-1]+vy[ii-1]*dt

vx[ii]=vx[ii-1]

vy[ii]=vy[ii-1]-g*dt

end

2.1 Plotting

We use PyPlot to display our results here. It’s imported into Julia from Python and has thorough
documentation and versatility.

Tips from Expierence: Always include x and y labels, title, legends, and relevant units on the
graph.

4

https://matplotlib.org/users/pyplot_tutorial.html

The graph might seem obvious to you now, but the labeling might not seem obvious to you
next week, next month, or next year. And it probably won’t seem obvious to someone else looking
at your work.

So I’ll be taking a few extra lines to make sure I include all that.

In [6]: plot(x,y)

plot!(xlabel="x",ylabel="y",title="Projectile Motion")

0 5 10

-4

-2

0

2

Projectile Motion

x

y

y1

In [7]: yexact=-g/2.*t.^2.+vy0.*t

plot(t,y,label="Numerical")

plot!(t,yexact,label="Exact")

plot!(xlabel="t",ylabel="y",title="Projectile Motion")

5

0.0 0.5 1.0 1.5 2.0

-4

-2

0

2

Projectile Motion

t

y
Numerical
Exact

In [8]: plot(t,yexact-y,label="Difference")

plot!(xlabel="t",ylabel="y error",title="Projectile Motion")

0.0 0.5 1.0 1.5 2.0

-0.0075

-0.0050

-0.0025

0.0000 Projectile Motion

t

y
er

ro
r

Difference

In [9]: plot(t,vy,label="vy")

plot!(t,vx,label="vx")

plot!(xlabel="t",ylabel="velocity",title="Projectile Motion")

6

0.0 0.5 1.0 1.5 2.0

-10

-5

0

5

Projectile Motion

t

ve
lo

ci
ty

vy
vx

2.2 But what if there is a surface?

If we place a surface at y = 0, or any other location, the ball won’t just keep on falling forever. We
can choose two types of actions when it encounters the surface

• Elastic Collision: The ball bounces with the same amount of kinetic energy, just in the oppo-
site direction

• Inelastic Collision: The ball loses a fraction of its energy in the collision.

– At an extreme of this case, the ball loses all its energy.

We use an if statement to determine when it encounters the surface. We’ll just do an elastic
collision, so we can just change vy and not have to worry about total energy, etc.

In [10]: for ii in 2:nt

x[ii]=x[ii-1]+vx[ii-1]*dt

y[ii]=y[ii-1]+vy[ii-1]*dt

if y[ii]<0

println("Hit the surface at t: ",t[ii],"\t x: ",x[ii])

vy[ii-1]=-vy[ii-1]

y[ii]=y[ii-1]+vy[ii-1]*dt

end

vx[ii]=vx[ii-1]

vy[ii]=vy[ii-1]-g*dt

end

Hit the surface at t: 1.445 x: 10.217692988145673

7

In [11]: plot(x,y)

plot!(xlabel="x",ylabel="y",title="Projectile with bounce")

0 5 10
0

1

2

Projectile with bounce

x

y

y1

In [12]: plot(t,vy,label="vy")

plot!(t,vx,label="vx")

plot!(xlabel="t",ylabel="velocity",title="Projectile with bounce")

0.0 0.5 1.0 1.5 2.0

-5

0

5

Projectile with bounce

t

ve
lo

ci
ty

vy
vx

8

2.3 Why do we do analytics at all?

So we just found our intercepts and made a bunch of nice graphs without ever having to do any
algebra. Why do we force you to slog through it?

Because you need to know what to expect to determine when it’s completely going wrong or
when something might fail numerically.

The parabola is pretty robust, but if you try other situations, like the Van der Pol problem or
ones that display any instability, we would need to calibrate to the right step size. More specialized
algorithms, like the ones I talk about in my ODE post, also give more accuracy the same step size.

Let’s do the same things but for a range of different time steps to show some of the limitations
of numerical analysis.

In [13]: # Lets choose our step sizes

dta=[.001,.01,.1,.2]

Out[13]: 4-element Array{Float64,1}:

0.001

0.01

0.1

0.2

In [14]: # The length of each time series

All arrays will be the same length, but some will be padded

na=floor.(Int,(tf-t0)./dta)

The place holding arrays

ta=zeros(Float64,maximum(na),length(dta))

xa=zeros(ta)

ya=zeros(ta)

vxa=zeros(ta)

vya=zeros(ta)

Where we start

xa[1,:]=x0

ya[1,:]=y0

vxa[1,:]=vx0

vya[1,:]=vy0

We perform one loop for each step size

for jj in 1:length(dta)

This is the step size for the loop

dt=dta[jj]

We only use the first na[jj] of the arrays

ta[1:na[jj],jj]=linspace(t0,tf,na[jj])

#The same loop we had before

for ii in 2:na[jj]

xa[ii,jj]=xa[ii-1,jj]+vxa[ii-1,jj]*dt

9

ya[ii,jj]=ya[ii-1,jj]+vya[ii-1,jj]*dt

if ya[ii,jj]<0

vya[ii-1,jj]=-vya[ii-1,jj]

ya[ii,jj]=ya[ii-1,jj]+vya[ii-1,jj]*dt

end

vxa[ii,jj]=vxa[ii-1,jj]

vya[ii,jj]=vya[ii-1,jj]-g*dt

end

end

In [19]: plot(title="Different time steps")

for ii in 1:length(dta)

plot!(xa[1:na[ii],ii],ya[1:na[ii],ii],label="$(dta[ii])")

end

plot!(xlabel="x",ylabel="y")

0 5 10
0

1

2

3

Different time steps

x

y

[0.001, 0.01, 0.1, 0.2][ii]
[0.001, 0.01, 0.1, 0.2][ii]
[0.001, 0.01, 0.1, 0.2][ii]
[0.001, 0.01, 0.1, 0.2][ii]

In [20]: yexact=-g/2.*ta.^2.+vy0.*ta

yerr=ya-yexact

plot(title="Error in y position for different time step sizes")

for ii in 1:length(dta)

plot!(ta[1:na[ii],ii],yerr[1:na[ii],ii],label="$(dta[ii])")

end

plot!(xlabel="t",ylabel="y error")

10

0.0 0.5 1.0 1.5 2.0
0.0

2.5

5.0

7.5

Error in y position for different time step sizes

t

y
er

ro
r

[0.001, 0.01, 0.1, 0.2][ii]
[0.001, 0.01, 0.1, 0.2][ii]
[0.001, 0.01, 0.1, 0.2][ii]
[0.001, 0.01, 0.1, 0.2][ii]

2.4 What about Air Resistance?

Real objects encounter air resistance proportional to velocity. That effect can’t be solved analyti-
cally, but our code can handle it easily.

We include air resistence by adding a force against the direction motion and proportional to
the velocity squared in strength. We then have to project it along the x and y directions.

~F = −sign(~v)
1
2

ρCd Av2 = −sign(~v)Rv2, (8)

where ρ is the density of the fluid, Cd is the drag coefficient, A is the cross section, and R is the
parameter I use here.

In [21]: R=.01

dt=1e-3

Out[21]: 0.001

In [22]: t=collect(t0:dt:tf) # creates an array that holds each time point

nt=length(t) #the number of time steps we willl have

#initializing empty vectors that will hold position and velocity at each time step

x=zeros(t)

y=zeros(t)

vx=zeros(t)

vy=zeros(t)

x[1]=x0

y[1]=y0

vx[1]=vx0

11

vy[1]=vy0

E=zeros(t)

E[1]=.5*(vx0^2+vy0^2)

Out[22]: 50.0

In [23]: for ii in 2:nt

x[ii]=x[ii-1]+vx[ii-1]*dt

y[ii]=y[ii-1]+vy[ii-1]*dt

if y[ii]<0

#println("Hit the surface at t: ",t[ii],"\t x: ",x[ii])

vy[ii-1]=-vy[ii-1]

y[ii]=y[ii-1]+vy[ii-1]*dt

end

sc=sqrt(vx[ii-1]^4+vy[ii-1]^4)/sqrt(vx[ii-1]^2+vy[ii-1]^2)

vx[ii]=vx[ii-1]-R*vx[ii-1]*sc*dt

vy[ii]=vy[ii-1]-g*dt-R*vy[ii-1]*sc*dt

E[ii]=g*y[ii]+.5*(vx[ii]^2+vy[ii]^2)

end

In [24]: plot(x,y)

plot!(xlabel="x",ylabel="y",title="Projectile with air resistence")

0 5 10
0.0

0.5

1.0

1.5

2.0

Projectile with air resistence

x

y

y1

In [25]: yexact=-g/2.*t.^2.+vy0.*t

12

plot(t,y,label="Air Resistence")

plot!(t,yexact,label="Exact No Air")

plot!(xlabel="t",ylabel="y",title="Projectile with air reseistence")

0.0 0.5 1.0 1.5 2.0

-4

-2

0

2

Projectile with air reseistence

t

y

Air Resistence
Exact No Air

In [26]: plot(t,vy,label="vy")

plot!(t,vx,label="vx")

plot!(xlabel="t",ylabel="velocity",title="Projectile with air resistence")

0.0 0.5 1.0 1.5 2.0

-5

0

5

Projectile with air resistence

t

ve
lo

ci
ty

vy
vx

In [27]: plot(t,E)

plot!(xlabel="t",ylabel="Energy",title="Decaying Energy with Air Resistence")

13

0.0 0.5 1.0 1.5 2.0

44

46

48

50 Decaying Energy with Air Resistence

t

E
ne

rg
y

y1

3 Terminal Velocity

Since we already have the piece of code for air resistance written, let’s just run it for a freely falling
object to determine terminal velocity.

In [28]: tf=10

Out[28]: 10

In [29]: t=collect(t0:dt:tf) # creates an array that holds each time point

nt=length(t) #the number of time steps we willl have

#initializing empty vectors that will hold position and velocity at each time step

y=zeros(t)

vy=zeros(t)

E=zeros(t)

y[1]=0

vy[1]=0

E[1]=.5*vy0^2

Out[29]: 24.999999999999996

In [30]: for ii in 2:nt

y[ii]=y[ii-1]+vy[ii-1]*dt

vy[ii]=vy[ii-1]-g*dt-R*sign(vy[ii-1])*vy[ii-1]^2*dt

14

E[ii]=g*y[ii]+.5*vy[ii]^2

end

In [31]: plot(t,vy,label="Velocity")

plot!(t,vy[end]*ones(t),label="$round(vy[end],2)")

plot!(xlabel="t",ylabel="velocity", title="Approaching terminal velocity")

0 2 4 6 8 10

-30

-20

-10

0 Approaching terminal velocity

t

ve
lo

ci
ty

Velocity
round(vy[end],2)

In [32]: plot(t,y)

plot!(xlabel="t",ylabel="y",title="Particle Falling in Air Resistence")

0 2 4 6 8 10

-200

-150

-100

-50

0 Particle Falling in Air Resistence

t

y

y1

15

In [33]: plot(t,E)

plot!(xlabel="t",ylabel="Energy",title="Energy of Falling Particle")

0 2 4 6 8 10

-1500

-1000

-500

0 Energy of Falling Particle

t

E
ne

rg
y

y1

3.1 The Termination

Now that we have seen terminal velocity, I will terminate this post. See you next time :)

16

	Intro to Jupyter Notebooks
	Markdown Cells
	Coding Cells
	Julia's Packages

	Projectile Motion
	A cell of parameters we need to enter
	Preliminary calculation of relevant variables
	Initialization of Variables
	Loop of Time Steps

	Plotting
	But what if there is a surface?
	Why do we do analytics at all?
	What about Air Resistance?

	Terminal Velocity
	The Termination

