
Homology Pt. 1

Christina Lee

July 12, 2017

Category: Grad

Tags: Mathematics

1 Introduction

I've been learning the pure mathematics of topology to understand the physics of topological materials better.

Predictably, my sources have a lot of theorems, the examples tend to be esoteric and hard to conceptualize,

and I have little idea how it all relates to my pretty crystals. There also aren't that many examples. I almost

miss the days back in high school when they forced us to do the same problem 1,000 times over.

So to better understand one of the important topics, simplices, and simplicial complexes, I've decided to

take the pure math and put it to programming the best that I can. I don't know if this is the best way of

doing things, or if it's useful at all, but I think it helps me understand them. Hopefully, it will help you too.

Topology is the study of deforming things. If we push and pull at something, without tearing or gluing,

what properties remain the same? A co�ee cup is the same as a donut because they both have one hole.

We are also the same as a donut because of our digestive track... if you ignore all the open cavities we

have inside. We can at least deform away our lungs. I'm not an anatomy expert.

Many objects of interest are topologies, which are just collections of sets that obey certain constraints.

Every manifold you've ever worked with has been a topology, but it probably was just trivial and didn't need

further study. To study more complex topologies, we can �nd an equivalent simplicial complex. We can then

compute a variety of things about the simplicial complex that tells us about the properties of the topology.

Simplicial complexes are made out of simplices.

A simplex is an n-dimensional generalization of a triangle. A 0-dim simplex is a point; a 1-dim simplex is

a line; 3-dim a tetrahedron; so on and so forth.

The rules for the simplices in a legitimate simplicial complex are

Figure 1: Di�erent dimensions of simplices and a simplicial complex.

1

1 INTRODUCTION

1. Every point must belong to at least one simplex

2. A point can belong to only a �nite number of simplices

3. Two di�erent simplices either have no points in common, or

(a) on is a face (or edge, or vertex) of the other

(b) the set of points in common is the whole of a shared face (or edge, or vertex).

[2]

A simplicial complex of dimension d will contain a �nite number of d-dimensional simplices, the faces of

those simplices, the faces of the faces, and so on until you get to all the points contained in the original

simplices.

I will denote each point by a string of length 1, like "a".

A simplex of dimension d is a string of length d . For example, in the �gure above, the two dim 2 simplices

are "abc" and "acd". For now, the order doesn't matter, but I am also working on a post to discuss p-chains,

where order matters.

A simplicial complex of dimension d contains simplices of dimension d , dimension d�1, ... , to 0. I create

an array of arrays to store these simplices. Each array of simplices corresponds to a di�erent dimension.

type simplex

s::String

end

type SimplexComplex

d::Int

s::Array{Array{simplex}}

end

After almost �nishing this post and hours of staring at some quite incomprehensible output, I've realized

that I can use some nice IO aspects to tailor how Julia displays my abstract types.

I �rst create a function that outputs some HTML to the IO stream. Then Base.show takes that IO

stream and renders it as HTML.

I believe that is what is going on. All I know right now is this works.

I particularly used this link https://docs.julialang.org/en/stable/manual/types/#Custom-pretty-printing-1

to in�uence how I created this function.

Note: This presentation does not work the the pdf.

function displayS(io::IO,s::simplex)

print(io,"<center>Simplex: $(s.s)</center>")

end

Base.show(io::IO,::MIME"text/html",s::simplex)=displayS(io,s)

function displaySC(io::IO,sc::SimplexComplex)

print(io,"<center><h3>Simplicial Complex</h3></center>")

for kk in 1:sc.d

print(io,"<center>Dimension: $(kk)</center>")

sc_now=sc.s[kk]

bigstring="<center>"

for jj in 1:length(sc_now)

2

1 INTRODUCTION

bigstring=bigstring*" "*sc_now[jj].s

end

bigstring=bigstring*"</center>"

print(io,bigstring)

end

end

Base.show(io::IO, ::MIME"text/html", sc::SimplexComplex)=displaySC(io,sc)

I could just iterate out every point, edge, and face of a simplicial complex by hand, but why spend my

time doing that when I can spend even more time writing code to get my computer to do it for me?

I'll send in the d-dimensional structure, and the computer will �gure out everything smaller than that.

My algorithm will go through and compute the face of every block in the last array, then the edges of all

the faces from before that, and so forth.

But some edges will belong to more than one face. See Point 3A in what a simplicial complex is, or line

"ac" in the �gure. I could just have "ac" in the simplicial complex twice, but then things start getting ugly

and clunky.

This next function AreSame determines if two strings are permutations of each other so that we can clean

up the complex. The even/ odd permutation aspect will play a role next post when I discuss p-chains.

Returns 0 is they two strings are not permutations of each other

Returns 1 if they are even permutations

Returns -1 if they are odd permutations

function AreSame(a::String,b::String)

if length(a) != length(b)

error("Strings not same length in AreSame")

end

l=length(a)

x=repmat(collect(1:l),1,l)

y=transpose(x)-1

z=(x+y-1).%l+1

zp=z[end:-1:1,:]

for jj in 1:l

n=""

m=""

for ii in 1:l

n=string(n,a[z[ii,jj]])

m=string(m,a[zp[ii,jj]])

end

if b==n

return 1

end

if b==m

return -1

end

end

3

1 INTRODUCTION

return 0

end

The function to create a complex is fairly straight forward, but I want to pull out one part that is simple,

but not particularly readable. I use a loop and a modulo to remove one index from a string.

Here's that unreadable chunk:

d_new_s=3

d_old_s=4

for ii in 1:d_old_s

println(collect(ii:(ii+d_new_s-1)).%d_old_s +1)

end

[2, 3, 4]

[3, 4, 1]

[4, 1, 2]

[1, 2, 3]

And now the large function to create a simplicial complex.

sc = simplecial complex

s = simplex

function CreateComplex(starter::Array{simplex})

n0=length(starter) # number simplices at a top dimension

d0=length(starter[1].s) #top dimension

sc=Array{Array{simplex}}(d0)

sc[d0]=starter;

n_new_s=d0*n0 # the number of simplices in the next row

n_old_s=n0 # the number of simplices in the last row

d_new_s=d0-1; # the next dimension

d_old_s=d0; # the last dimension

for kk=(d0-1):-1:1

s_last=sc[kk+1]

s_next=Array{simplex}(n_new_s)

for jj in 1:n_old_s

for ii in 1:d_old_s

s_next[d_old_s*(jj-1)+ii]=

simplex(s_last[jj].s[(collect(ii:(ii+d_new_s-1))).%d_old_s+1])

end

end

4

1 INTRODUCTION

sc[kk]=s_next;

n_old_s=n_new_s

n_new_s=n_new_s*d_new_s

d_old_s=d_new_s;

d_new_s=d_new_s-1;

end

return SimplexComplex(d0,sc)

end

I decided to break creating the complex into two functions for the sake of readability. The next function

SimplifyComplex gets rid of repeated simplices.

We have to be careful when deleting elements of an array if we are still working with it. While removing

elements, a for loop would be tricky, because my loop changes in size each time. Instead, I use a while

control loop. Also, I delete matches from the end of the array to the beginning to disturb the fewest elements.

function SimplifyComplex(sc::SimplexComplex)

sc=SimplexComplex(sc.d,copy(sc.s))

for kk in 1:(sc.d-1)

sc_now=sc.s[kk]

ii=1

while ii<length(sc_now)

for jj in length(sc_now):-1:(ii+1)

if 0 != AreSame(sc_now[jj].s,sc_now[ii].s)

deleteat!(sc_now,jj)

end

end

ii+=1

end

end

return sc

end

a=simplex("abc")

Simplex: abc

b=simplex("abd")

Simplex: abd

sc=CreateComplex([a,b])

5

1 INTRODUCTION

S
	
implicial Complex

Dimension: 1

c b a c b a d b a d b a

Dimension: 2

bc ca ab bd da ab

Dimension: 3

abc abd

sc2=SimplifyComplex(sc)

S
	
implicial Complex

Dimension: 1

c b a d

Dimension: 2

bc ca ab bd da

Dimension: 3

abc abd

While my HTML output is much easier to read than the original way Julia spit out a simplicial complex,

we can still do better.

Simplicial complexes are just graphs with additional stu� on top, so we can use some of Julia's graph

packages to look at the simplicial complexes.

The nodes are 0-simplices, and edges are 1-simplices.

We can't call the nodes by "a"; we have to call them by 1. Therefore, I create a dictionary from "a" to

1.

using LightGraphs

using GraphPlot

using Compose

function makegraph(sc::SimplexComplex)

nodes_num=Dict()

for ii in 1:length(sc.s[1])

nodes_num[sc.s[1][ii].s] = ii

end

g=Graph(length(sc.s[1]))

for ii in 1:length(sc.s[2])

site1=nodes_num[sc.s[2][ii].s[1:1]]

site2=nodes_num[sc.s[2][ii].s[2:2]]

add_edge!(g,site1,site2)

end

return g

end

6

1 INTRODUCTION

(a) (b)

Figure 2: a) Graph generated from the simplicial complex sc. b). A sphere S2 is the four 2-simplices

that border a tetrahedron.

g=makegraph(sc2)

gplot(g, nodelabel=sc.s[1])

1.1 Sphere S2

That object is fairly boring, topologically speaking.

Let's crank it up to something to something slightly more complicated, the sphere S2.

I drew up the simplicial complex of a sphere in Inkscape:

sphere=["abc","acd","abd","bdc"]

4-element Array{String,1}:

"abc"

"acd"

"abd"

"bdc"

starter=simplex[]

for s in sphere

push!(starter,simplex(s))

end

S2=CreateComplex(starter)

S2=SimplifyComplex(S2)

7

1 INTRODUCTION

simplex("c")
simplex("b")

simplex("a")

simplex("d")

(a)

a b c a

a b c a

d

e

d

e

f g

h i

(b)

Figure 3: a) graph generated for a sphere b) The decomposition of a torus.

S
	
implicial Complex

Dimension: 1

c b a d

Dimension: 2

bc ca ab cd da bd

Dimension: 3

abc acd abd bdc

gS2=makegraph(S2)

gplot(gS2, nodelabel=S2.s[1])

1.2 Torus T 2

Similar to a sphere, we also have a torus, T 2, see in Figure ??.

"Eh?" you might wonder...

Why does a torus have so many triangles?

We can't just write our simplices as "Go from a to a then over to a then back to a". Or aaa.

We have to divide the torus into enough points to uniquely specify each 2-simplex, 1-simplex, and 0-simplex.

We are now in the regime of having too many simplices to even write out every 2-simplex easily.

To aid me in this task, I wrote out just the strings and put them in an array. I separate all the strings by

their location, so I won't get lost as I'm writing them out.

col1=["abd","bdf","dfe","efh","efa","ahb"]

col2=["bcf","cfg","fgh","ghi","hib","ibc"]

col3=["cag","agd","gdi","die","iec","eca"];

So I've managed to get a list of all the 2-simplices I need, but they are not in the correct form. So I have

the next little bit of code to change my three Arrays of strings to one Array of simplices.

8

1 INTRODUCTION

Figure 4: A highlighted version of a torus graph.

starter=simplex[]

for s in [col1; col2; col3]

push!(starter,simplex(s))

end

T2=CreateComplex(starter)

T2=SimplifyComplex(T2)

S
	
implicial Complex

Dimension: 1

d b a f e h c g i

Dimension: 2

bd da ab df fb fe ed fh he fa ae hb ah cf bc fg gc gh hi ig ib ci ag ca gd di ie ec

Dimension: 3

abd bdf dfe efh efa ahb bcf cfg fgh ghi hib ibc cag agd gdi die iec eca

I think this graph is even worse than the sphere...

gT2=makegraph(T2)

gplot(gT2, nodelabel=T2.s[1])

I took the plot automatically generated for the torus, and played around with it to try and make sense of

the graph, see Figure 4. I found two distinct loops that can't be deformed away. This con�rms to me that

the graph indeed is a torus, even if it looks like a bunch of goble-de-gook.

Try and �nd a loop that can't be deformed away on S2. But don't try too long; it's impossible.

Why did I look for "distinct loops that can't be deformed away"? I'll cover that more next time with

p-chains, cycles, boundaries, and homology groups.

I highly recommend Allen Hatcher's book on Algebraic Topology [1] for learning this topic. Bonus, it's

availible free online at https://www.math.cornell.edu/~hatcher/AT/AT.pdf

9

REFERENCES

References

[1] Allen Hatcher. Algebraic topology. 2002. Cambridge UP, Cambridge, 606(9), 2002.

[2] Michael Stone and Paul Goldbart. Mathematics for physics: a guided tour for graduate students. Cam-

bridge University Press, 2009.

10

	Introduction
	Sphere S^2
	Torus T^2

