
1D Spin Chain Part 2

Christina Lee

July 11, 2017

Category: Grad

Tags: Quantum, ED, Magnet

Prerequisites: Many-Body Quantum Mechanics, 1D Spin Chain Part 1

Check out part 1 for the theoretical background, or [1] for an extensive explanation. Today is all
programming.

Remember to keep a reasonable number of spins, n. The number of states goes as 2n, and the
size of the Hamiltonian will go as 2n � 2n. A 10-spin chain will have over a million entries, before
taking into account any memory reducing tricks.

Here's the details of the largest spin-chains that �t on my machine which has 16GB of RAM and
a 3.2 GHz Intel i5 processor:

n m_z t (min) Memory (Gb)

16 8 1.5 2
18 9 ? >16
18 8 32.1 15.5

I have included a �le in this directory, ED.jl, that is just the necessary executable parts of this
Jupyter notebook. For large n, I recommend running ED.jl.

Here, we input one parameter n, the number of spins in our chain.
The program automatically calculates the parameter nstates.

In [1]: n=4

nstates=2^n

Out[1]: 16

Now, let's write out all of our possible states in the Sz basis.

In [2]: psi=collect(0:(nstates-1))

for p in psi

println(bin(p,n),' ',p)

end

0000 0

0001 1

0010 2

0011 3

1

0100 4

0101 5

0110 6

0111 7

1000 8

1001 9

1010 10

1011 11

1100 12

1101 13

1110 14

1111 15

As in Part 1, we will be using the powers of 2 to compute magnetization, and masks to �ip spins.
To not have to calculate them each time, we just store them in memory.

In [3]: powers2=collect(0:(n-1));

powers2=2.^powers2;

mask=[0;powers2]+[powers2;0];

mask=[mask[2:end-1];[1+2^(n-1)]]

for m in mask

println(bin(m,n))

end

0011

0110

1100

1001

In Part 1, I used the number of up-spins as a proxy for magnetization. Here, we need the ac-
tual magnetization, not a proxy. An up-spin is +1=2 and a down-spin is �1=2. We modify our
magnetization by

m =
1

2

(
n" � n#

)
=
1

2

(
n" �

(
n � n"

))
; (0.1)

m = n" �
n

2
: (0.2)

In [4]: m=zeros(psi)

for i in 1:nstates

m[i]=sum((psi[i]&powers2)./(powers2))

end

m=m-n/2

2

Out[4]: 16-element Array{Float64,1}:

-2.0

-1.0

-1.0

0.0

-1.0

0.0

0.0

1.0

-1.0

0.0

0.0

1.0

0.0

1.0

1.0

2.0

Grouped by Magnetization

Now that we have the magnetizations corresponding to each state, we perform some trickery that
allows us to reduce the di�culty of our problem dramatically.

Magnetization is a conserved quantity. By Noether's theorem, we know that the Hamiltonian is
not going to mix states of di�erent magnetizations. We only deal with one magnetization at a time,
which is a much smaller problem.

In [5]: # The possible values for magnetization

ma=collect(0:1:n)-n/2

Out[5]: 5-element Array{Float64,1}:

-2.0

-1.0

0.0

1.0

2.0

Now let's just pick out a single magnetization quantum number mz and only work with that matrix
for the rest of the post.

In [6]: # The magnetic quantum number

mz=3

An array of states with the correct magnetization

psi_mz=psi[m.==ma[mz]]

[psi_mz bin.(psi_mz,n) m[psi_mz+1]]

Out[6]: 6�3 Array{Any,2}:

3 "0011" 0.0

3

5 "0101" 0.0

6 "0110" 0.0

9 "1001" 0.0

10 "1010" 0.0

12 "1100" 0.0

And now creating the matrix.
Stu� goes here

In [7]: dim=length(psi_mz)

M=ma[mz]*(ma[mz]+1)*eye(Float64,dim,dim)

#M=zeros(Float64,dim,dim); use this for XY model

Though we have signi�cantly reduced the size of the matrix by restricting to one magnetization,
we no longer have our states in 1,2,3,4... order. Their position in an array no longer corresponds
to their value. Therefore, we need a function to determine their index once we know their value.

We can �nd the index of the �ipped state multiple di�erent ways, but the simplest is by the
Midpoint method. We split the interval in half, and see if the value we are looking for is higher or
lower than the middle point. Then we get a new interval.

In [8]: function findstate(state::Int,set::Array{Int})

#Lower bound of interval

imin=1

#Upper bound of interval

imax=length(set)

checking if the lower bound is what we are looking for

if set[imin] == state

return imin

end

checking if the upper bound is what we are looking for

if set[imax] == state

return imax

end

Initializing variables

looking to see if we've found it yet

found=false

how many times we've gone around the while loop

count=0

while found==false && count < length(set)

count+=1

tester=floor(Int,imin+(imax-imin)/2)

4

if state < set[tester]

imax=tester-1

elseif state > set[tester]

imin=tester+1

else

found=true

return tester

end

end

if found == false

println("findstate never found a match")

println("Are you sure the state is in that Array?")

end

return 0

end

Out[8]: findstate (generic function with 1 method)

Now time to generate the matrix.
For each state and for each pair of adjacent spins within that state, we apply the operator that

�ips adjacent spins, $mask. Sometimes the adjacent spins will take on the same value, 00 or 11. In
this circumstance, the o�-diagonal part of the Hamiltonian would not act on those spins. The state
generated by the operator would have a di�erent magnetization, and we can neglect that pair.

If the new state produced by this process has the same magnetization, we know that the �ip exists
in the Hamiltonian, and add the entry to the matrix.

In this algorithm, we do end up going over each pair twice, but I have yet to �gure out how to
take advantage of the degeneracy to cut the calculation in half. Let me know if you have a better
way to write this.

In [11]: mp=sum(psi_mz[1]&powers2./powers2)

for ii in 1:length(psi_mz)

p=psi_mz[ii]

for jj in 1:n

flipped=p$mask[jj]

if sum((flipped&powers2)./powers2) == mp

tester=findstate(flipped,psi_mz)

M[ii,tester]=.5

M[tester,ii]=.5

println(bin(p,n),'\t',bin(flipped,n))

end

end

end

0011 0101

0011 1010

5

0101 0110

0101 0011

0101 1001

0101 1100

0110 0101

0110 1010

1001 1010

1001 0101

1010 1001

1010 1100

1010 0110

1010 0011

1100 1010

1100 0101

In [12]: M

Out[12]: 6�6 Array{Float64,2}:

0.0 0.5 0.0 0.0 0.5 0.0

0.5 0.0 0.5 0.5 0.0 0.5

0.0 0.5 0.0 0.0 0.5 0.0

0.0 0.5 0.0 0.0 0.5 0.0

0.5 0.0 0.5 0.5 0.0 0.5

0.0 0.5 0.0 0.0 0.5 0.0

In [13]: F=eigfact(M)

display(F[:values])

display(F[:vectors])

6-element Array{Float64,1}:

-1.41421

0.0

0.0

0.0

1.9984e-15

1.41421

6�6 Array{Float64,2}:

0.353553 0.0 -0.211325 0.788675 -0.288675 -0.353553

-0.5 0.707107 0.0 0.0 -5.1279e-16 -0.5

0.353553 0.0 0.788675 -0.211325 -0.288675 -0.353553

0.353553 0.0 -0.57735 -0.57735 -0.288675 -0.353553

-0.5 -0.707107 0.0 0.0 -5.1279e-16 -0.5

0.353553 0.0 0.0 0.0 0.866025 -0.353553

Now we have eigenvalues and eigenvectors! You just solved the Heisenburg Spin Chain!
In my next post, I will analyze what this tells us about the system and what we can do with the

information.

6

REFERENCES

References

[1] Anders W. Sandvik, Adolfo Avella, and Ferdinando Mancini. Computational Studies of Quantum
Spin Systems. volume 135, pages 135�338, 2010.

7

